
Baltes

An Integrated Planning Representation

using

Macros, Abstractions, and Cases

Jacky Baltes and Bruce MacDonald

2500 University Drive NW

Calgary, Alberta T2N 1N4, Canada

{ baltes,bruce } _cpsc.ucalgary.ca

Abstract

Planning will be an essential part of future au-
tonomous robots and integrated intelligent sys-
tems. This paper focuses on learning problem
solving knowledge in planning systems. The sys-
tem is based on a common representation for
macros, abstractions, and cases. Therefore, it is
able to exploit both classical and case--based tech-
niques. The general operators in a successful plan
derivation would be assessed for their potential
usefulness, and some stored. The feasibility of this
approach was studied through the implementation
of a learning system for abstraction. New macros
are motivated by trying to improve the operator-
set. One heuristic used to improve the operator-
set is generating operators with more general pre-
conditions than existing ones. This heuristic leads
naturally to abstraction hierarchies. This investi-
gation showed promising results on the towers of
Hanoi problem. The paper concludes by describ-
ing methods for learning other problem solving
knowledge. This knowledge can be represented by
allowing operators at different levels of abstraction
in a refinement.

Introduction

This paper advocates a common representation for op-
erators that includes abstract plans, casesand macros
[Baltes, 1991]. An important aspect of this represen-
tation is that a system should be able to learn the
necessary problem solving knowledge.

The implementation of a prototype system that
learns abstraction hierarchies is described. The learn-

ing system tries to improve the operator-set by ex-
tracting macros with more general preconditions than
existing ones. This leads naturally to the generation
of abstraction hierarchies. Rather than searching for
new macros explicitly, the learner extracts new macros
from a successful plan. It tries to find operators that
result in identical states and that differ in exactly one
pre-condition predicate. If such operators are found,
the system deletes the differing predicate from the pre-

conditiona, thus forming an abstract operator. Since
the planning system is intended to support case-based
planning techniques, a generalized and an instantiated
version of the macro is stored. We intend to use a novel

dynamic filtering scheme [Baltes, 1991] to delete poor
macros.

The learning system was tested on the towers of
Hanoi problem and showed promising results. The re-
mainder of the paper is organized as follows: first, the
paper preaents a common representation for planners,
then reviews previous work on operator learning with
macros. Section explains how operators are learned
in our repreaentation. Then, a description of the im-
plementation and an example are given. The paper
concludes by describing how we intend to learn other
problem solving knowledge such as reactive rules or
anticipation of failure.

Macro-Operators

A linear macro is a sequence of primitive op-
erators. This sequence is usually generalized
and added to the operator set as a new op-
erator. For example, useful macros in the
blocks world domain are pickupffi(goto,grasp) and
putdowaa(goto,ungrup). Macros can be used
in the construction of new macros, for example
mov,,- (pickup, putdoen).

This paper focuses on linear macros because the for-

mation of iterative or disjunctive macros depends on
good linear ones [Shell and Carbonnel, 1989]. Macros
speed up the planning process because they reduce the
solution length. On the other hand, the generation
of macros must be carefully controlled because new
operators increase the branching factor of the search
space. Minton showed that simply generating all pos-
sible macros from a successful solution decreases per-
formance [Minton, 1985].

Dynamic Filters

As mentioned above, only a small number should be
generated, ideally ones that will be useful in future
problem solving tasks. The basic problem of macro
learning is that the system has to predict the useful-

ness of a macro based on its previous experience. The
following paragraphs describe the effect of adding one
macro to the operator set and derive a Ise_Iness me&-
sure for such an addition. This measure can be used

to dynamically delete macros.
By adding a macro m, the branching factor is in-

creased. However, the new macro will not be appli-
cable in all situations. Let b be the branching factor
without the macro in question. Let c be the fraction of
states where m is applicable. Furthermore, not all ap-
plications of m will lead to a solution, so let um be the
ssefulness of m, which is the overall chance of applying
m to achieve a solution; the ratio of the total number
of times m leads to a solution, to the total number of
times any operator is applicable. If I, is the number
of primitive operators in m, then the time complexity
for the new operator set is of the order:

(b+ c)"P-'-
The branching factor is increased by the applicability
of m, and the effective sohtion length is reduced by the
chances of using m, and in proportion to m's length. If
Um is I, this means m is used at each step of the solu-
tion, and the plan is divided in length by the number
of operators in m. If planning is to be faster when a
macro is added, then the following inequality must be
satisfied:

b" > (b+ c)"/'-'- (1)
I

logb > /,,u, log(b+c) (2)

x los(b+ c) (3)
um)_ I"_" logb

The macro length predominates the generality of its
preconditions, c, in 3. So it will be more important
to allow long macros than more specific macro pre-
conditions. However, the preconditions cannot be ig-
nored; impractically large values are required for b to
make the second fraction in 3 approach unity. Note

that u. and i. are not independent; as the length
grows the chances of the macro being used in a plan de-
crease. Furthermore, it is also assumed that the space
searched does not change with m. Under this assump-
tion, b and c are independent.

Equation 3 cannot be used directly for selecting new
macros because urn, b, and c cannot be effectively com-
puted a priori. However, these values can be approxi-
mated statistically. After a number of trials, equation 3
can be used as a dynamic filter to remove unnecessary
macro0.

Iba [Iba, 1989] proposes dynamic filters in his
MACLEARN system. However, the implementation
seems ad hoc; the user determines when to call the
dynamic filter routine, which deletes all macros that
have not been used at least once in a previous problem
solving episode.

The utility measure is not based on the number of
preconditions in a macro-operator (as it is done in

Minton's system), since as will be explained in the re-
malnder of the paper, the number of pre-conditions
does not increase in my system.

Macros, Abstractions, and Cases

This section suggests a common representation for
macros, abstractions, and cases in a planning sys-
tem. It will show the similarity and differences be.
tween these methods, and suggest that a common rep-
resentation will allow a problem solver to use all three
strategies simultaneously.

The proposed representation will enable a planning
system to maintain important advantages of previous
SyStellfltS:

• The planner will learn only when there is strong
motivation, in order to increase performance in
the future. This point has been shown by the
MACLEARN system (flatten the search space, [Iba,
1989]) and by the CHEF system (repair failed plans
and anticipate problems, [Hammond, 1989]).

• Proposed macros are filtered statically as well as dy-
namically. A new heuristic described in equation 3
is used.

• The planner learns from a worked example (similar
to MACLEARN, PiL2 [Yamada and Tsuji, 1989],
CHEF) rather than using a brute force search to
find new operators (which would be similar to MPS
,[Korf, 1985].

• The planner should be able to use s heuristic func-
tion or other knowledge that is available.

Korf mentioned the similarity between abstractions
and macros [Korf, 1987]. Both methods try to reduce
the search by generating a skeleton search space of
the original problem space. Instead of searching in
the original space, a solution is found in the skeleton
space and this solution is then refined into a solution in
the original problem space. One difference, however,
is that there can be more than one abstraction level

whereas macros normally generate only one skeleton
space.

Cases can be viewed as long, specific macros. The
main distinction between macros and cases is the way
in which they are used in a planning system. Cases are
fetched from memory and some plan critics are applied
to change the case to the new situation. Macros ate
usually not altered, i.e. the sequence of elementary
operators is not adapted to the new situation.

The common feature among all three items is that
the most important information stored is a set of pre-
conditions and a set of effects, as for elementary oper-
ators.

Abstraction hierarchies are equivalent to elementary
operators that are missing some precondition pred-
icates. This means that although the specific exe-
cution depends on all pre-conditions, the effects can
be achieved independently of the actual value of the

deletedpredicatesin thepre-conditions.Oneabstract
operator can be specialized in a number of different

ways. The representation can capture this by associ-
ating a set of operators with pre-conditions and ef-
fects. This structure represents that the effects can

be achieved given that the pre-conditions are true,
but that the instantiation of the plan may depend
on predicates not mentioned in the pre-conditions. A
method similar to PiL2's perfect causality heuristic is
used to generate new operators that depend on fewer
pre-conditions. More than one level of abstraction can

be represented by showing that elements of the refine-
ment of an abstract operator can consist of abstract
operators.

Common representation

In our common representation, shown in Figure 1,
an operator is recursively represented as (a) a pre-
conditions and effects pair, and (b) a set of refinements,
each of which is an operator sequence. A primitive op-
erator has no refinements, and can be executed.

A variety of well-known problem solving knowledge
is supported. An operator is like a macro if (a) there
is only one refinement, (b) each operator in the re-
finement is a primitive, and (c) preconditions and ef-
fects predicate arguments are instantiated in neither
the operator nor the refinement (i.e. the macro has
formal parameters). A case is an operator with a re-
finement that is a fully instantiated (long) sequences
of. primitives (i.e. an instantiated macro). An abstract
operator at criticality level h has refinement/s whose
operators are abstract ones at level /: - 1. This rep-
resentation supports relazed (predicates deleted from
pre-conditions, ABTWEAK) as well as redwced (pred-
icates deleted in pre-conditions and effects, ALPINE)
models of abstraction [Knoblock, 1991].

An operator is a subgoal sequence if all refinements

contain no primitive operators (e.g. means ends anal-
ysis). Anticipation of failure can be represented by an
operator whoee single refinement is a single operator
pre-conditions, effects pair in which there is an ad-
ditional effect (such as "avoid soggy broccoli"). This
ensures that the planner knows about the problem, and
the refinement of the failure anticipation operator will
be expanded using the successful plan, which is also
stored as an operator. Since our representation does

not enforce a common level of abstraction for opera-
tors in the refinement, a case or macro can also be

generalized by making some operators non-primitives.
This allows us to store adaptations of a case such as
the replacement of some steps. Reactive rules may be
represented as an operator who6e single, two-operator
refinement is a fully instantiated, primitive first opera-
tor, followed by a non-primitive pre-conditions, effects
pair. If this two-operator refinement is reversed, then
the resulting operator is suitable for backward chain-
ing from the goal (similar to RWM [Giivenir and Ernst,
1990]).

While this generality provides a common operator
representation, it also presents the immediate problem
of controlling the creation of operators, so that plan-
ning is not impo_ibly expensive. We intend to control
thin using the dynamic operator deletion mechanism
introduced above. In addition, the learning methods
that add operators to the case memory must do so only
when there is strong justification, and must choose

"important" parts of new plans for storage, deciding
the level of abstraction, number of refinements, and so
on. This is the subject of current work. The common
representation enables us to treat the various kinds of
planning system in a single consistent framework, to
better aid analysis and comparison.

The planner may choose to "forget" the refinements
of some operators, when their usefulness decreases.
But the preconditions, effects pair is retained, and
the detaik can be replanned if necessary.

Planning using a common Representation

This section indicates how one might use the operator
representation given in this paper. The planner should
combine case-based as well as cla_ical planning tech-
niques, to take advantage of both previous experience,
and the ability to solve new problems. What is needed
is a control strategy that recalls and uses previous ex-
periences to solve similar new problems, but gracefully
moves into classical planning if no similar cases can be
found. The recursive structure of the representation
lends itself well to a recursive control strategy. Learn-
ing is designed to support and improve the planning
proce_, by storing new operators. The planner should
restrict the branching factor of the search space by fo-
cusing on a small number of operators instead of all
applicable ones.

The input to the planner are initial state, goal state,
and the operator set. Additional input is a resource
limit and a skeleton plan agenda, which may support
resource limited and multiple task planning. The plan-
ning begins by matching and recalling stored operators
that have preconditions and effects similar to the cur-
rent state and goal. The refinement/s of these opera-
tor/s will give various types of plans to be considered
for solving the current problem.

Recalling similar operators A stored, similar case
may have additional preconditions or effects, or be
miming some. Operators should be recalled when their
preconditions and/or effects are similar to the current
goal and initial state. Possible indexing schemes for
recall can be based on the number of predicates in pre-
conditions and effects, the predicates themselves, or
combinations of predicates.

Recalling is independent of the learned operator hi-
erarchy; the fetched operator is not necessarily at the
top level of a refinement tree. For example, if there is
an abstract operator to move a medium disk indepen-
dently of the small disk, and one refinement of this is

KEY: [Pre, Post] indicates a nora-primitive operator, < Pre, Post > a primitive one, _nd < [Pre, Post] > either. < [Pre, Post] >h is
•.n operator with predicates at critica]ity [eve] k or above.

Genera] Operator: < [Prell, Postll] >, < [Pre1_, Postl_] >... < [Prel,,, Postl,,] >
[Pre, Post] ----- < [Prs2s, Post21J >, < [Pre_2, Post22J > • < [Pre_,3, Post3a2J >

< [Preml, Pastas] >, < [Prem2, Pasta2] >... < [Pre Pasta,m] >

Each Pre,1 =_ Pre ud each Post_ss =_ Post.

Macro (uninstanti_ted arguments) or Cue (inst_atiated arguments):
[Pre, Post] --- < Pre, Post1)< Pre_, Post2 >... < Pre., Post)

Abstract operator:

[Pre, Post]* ----.
< [Prsls, Post11] >*-I, < [Prth2, Posts3] >k-1... < [Prel.s, Pasta.,] >h-1
<[Prs2z,Post_1]> '-1,<[Pre_,Post_a]> '-I . <[Prehz,Post2.,]) _-I

< [Preml, Postal] >,-I, < [Prem2, Postma] >,-s... < [Prsm,.,, Pasta,.,] >*-s

Autom,tic subgoa]ing: [Pre, Post] ---. [Pre, Postl][Prs2, Pasta]... [Prs,, Post]

Anticipation of failure: [Pre, Post] ----- [Pre, Posts]

Reactive rules: [Pre, Post] ----- < Pre, Postl >[Pre2, Post]

RWM-type operator subgoa]: [Pre, Post] ---. [Pre, Posts]< Pre_, Post >]

Figure I: The representation of planning operators.

to move the medium disk when both are on the first

peg, and if the current state is that both disks are on
that peg, that refinement is retrieved, rather than a
more abstract one.

Adapting an existing plan Adaptation of a plan
to new initial states and goal states is done by
analysing the differences among the initial state and
the preconditions and among the goal state and the
effects of the similar plan. There are a number of gen-
eral purpose adaptations to a plan that substitute one
operator, listed below. If these don't provide a com-
plete plan, then we treat the adapted plan u a subplsn
and use means ends analysis to complete it.

Replace Steps: An operator should be removed and
steps inserted to achieve either preconditions or ef-
fects.

• Remove Side effect: If a plan fails because one
operator has a specific side elect try to replace
this operator with one that works.

• Protect effect: A following operator destroys an
effect of the solution. Try to replace this operator
with one that does not change the side effect.

Substitution: Replace a variable instantiation with
a different object (the operator sequen_ is un-
changed).

To find where to replace an operator, preconditions
of the case that are not given in the current situation

are pushed forward up to the first operator depending
on those preconditions. Then the planner finds all
elements of the effects that are dependent on this op-
erator. If the effects are also part of the current goal,
the system generates a new planning problem from the
state just before the operator with the non-matching
precondition to the first operator that uses any of the
effects established. For example, if the goal is to have
a barbecue and one of the preconditions is to have
a match, this precondition is pushed forward to the
operator nako-f_re. Since fire is a prerequisite for a
barbecue, this effects is pushed backward to the op-
erator put steaks on fire which has has-flre as a
precondition. The system then tries to "improvise"
and generate a plan using the state just before the op-
erator maka-_re to operator put steaks on f_rs.
Given that we have a lighter in the current state, this
plan can be emfily generated. The iLght match opera-
tar is replaced by the use 1LShtar operator. "Remove
side effects" and "Protect effect" are specializations of
the Replace operator strategy.

If the non-matching precondition does not estab-
lish a current goal predicate, the system tries to apply
all operators of the plan, substituting variables where
necessary (e.g. beans for broccoli). For example, given
a plan to make a beef and bean dish from the ingredi-
ents, and if the system returns a plan for a beef and
broccoli dish, the precondition have broccoli does not
establish any predicate in the current goal (beef and

4

beans dish). In this case, the system simulates the
plan and uses beans instead of broccoli.

After the case has been fixed to achieve all its ef-

fects with the new initial conditions, the system tries
to achieve missing goal conditions one by one, using
means ends analysis. The first non-satisfied term of
the goal conjunction is selected and a new planning
problem is generated from the goal state of the case to
the goal state of the original problem.

The planner computes the subgoais that are neces-
sary for the achievement of any of the adaptations or
classical planning rules. It then retrieves similar cases
for each of the generated subgoals and tries to work on
them in order of similarity. This can also be used to re-
pair failed plans, if the failed plan is stored in memory
with a new effects added so that the failure is avoided.

Learning General Operators

Many researches have investigated different meth-
ods for constructing macros [Korf, 1985; Korf, 1987;
Minton, 1985; Iba, 1989; Yamada and Tsuji, 1989]. A
comparison of those methods leads to the following is-
SUES:

Generalized macros Korf's MPS system [Korf,
1985] stores instantiated macros, whereas Yamada's
PiL2 system [Yamadg and Tsuji, 1989] and lba's
MAC-LEARN system Jibs, 1989] generalize macros, so
that they are more widely applicable. Although gen-
eralization of macros seems intuitive, it also increases
the search space, especially if many objects exist in the
domain.

Worked examples The MPS system searches for
macros to fill the table. In the worst case, this may
prevent the algorithm from terminating, although a so-
lution to the problem may exist. This can occur if MPS
is trying to find an impossible macro. PiL2 and MAC-
LEARN use a "worked example _ to extract macros. A
" worked example" is either a successful plan or part
of the search space that was searched when trying to
find a successful plan. This means that no extra search
effort is required for the generation of macros.

Motivation The motivation behind the MPS sys-
tem is to combine automatic subgoaling with macros.
Macros are used to serialize a subgoal sequence by
guaranteeing that the goal conditions of previous sub-
goals are satisfied after the application of the macro,
although they may be temporarily destroyed during its
application. The heuristic used in the MAC-LEARN
system is to generate macros between peaks in the
heuristic evaluation function. This means that macros

are used to flatten the search space of the heuristic eval-
uation function so that valleys can be traversed faster.
The PiL2 system uses the perfect causality heuristic. It

extracts a macro from a successful plan if (a) the pre-
conditions of an operator in the plan were not satisfied

in the initial state, and (b) the preconditions of this
operator were satisfied after the application of previ-
ous operators. The motivation is to generate macros
that allow the system to apply more operators to the
initial state.

Learning Abstraction Hierarchies with
Macros

Although a common representation is powerful, the
manual generation of useful operators requires a large
amount of domain knowledge and is tedious. Ideally,
the planning system should learn operators from its
previous experience. Therefore, a learning system was
designed to create new operators for the represents-
tion. There are two major motivations for the system
to learn:

Failure The system generates a plan that failed.
Here, it tries to avoid generation of invalid plans in
the future. Examples are anticipation of failure in
case-bnsed planning systems or explanation based
learning rules.

Success Given that the system generated a success-
ful plan, extract information from this plan to speed
up the process for similar goals in the future. The
generation of macro-operators and automatic sub-
gosling fall into this category.

The "need to learn" is easily recognized in the failure
driven approach. The system knows exactly when new
information has to be added, that is exactly when a
generated plan failed. The problem is to decide what
information should be stored in order to avoid failure in
the future. For example, should the fully instantiated
problem be stored or a generalization of it.

Learning in the success driven approach is harder,
because the system must decide when to integrate new
knowledge as well as what knowledge to integrate. For
example, the MAC-LEARN system motivates learn-
ing by trying to flatten the search space. In PiL2, a
sequence of operators that are used only to generate
pre-conditions of a following operator should be com-
bined in one macro so that the operator can be applied
to the initial state.

This paper proposes two new heuristics for the gen-
eration of macros. The motivation is that to improve
performance, a macro learner must improve the op-
erator set. A macro-learner only changes the oper-
ator set, it does not tell the planner when to apply
new operators. For example, it does not affect the
heuristic evaluation function. Previous systems such
as MAC-LEARN and PiL2, however, do not take the
current operator set into consideration when learning
new macros. There are two ways in which an operator
can be improved.

Heuristic 1 Try to create new abstract operators
that contain fewer preconditions than existing oper-
ators, and identical effects. That means that certain
conditions can more easily be generated.

Heuristic 2 Try to introduce operators that have
fewer effects than existing ones. This generates oper-
ators with more specific effects, so that the planning
system can affect the world more controlled.

Heuristic I is more interesting because it generates
an abstraction hierarchy of operators. This paper de-
scribes the implementation of a macro-learner that
uses only the first heuristic to find new macros.

Implementation of the Macro-Learner

The learning system described in this paper is an ad-
dition to the AbTweak planning system implemented
by Yang [Yang and Tenenberg, 1990]. The macro-
learner generates a successful plan using AbTweak and
extracts macros from it.

Figure 2 is a pseudo code description of the algo-
rithm used. Explanation based generalisation (EBG)
is a common techn.ique for the generalisation of a
macro [Minton, 1985|. The problem is given a sequence
of operators and variable instantiations to compute
the weakest set of preconditions that still allow the
achievement of its effects.

Post-Conditions The post--conditions of an opera-
tor are the set of facts that must be true after appli-
cation of the operator. It is different from the effects
of an operator because the effects only mention facts
that are chs,ged by the operator. However, the pre-
conditions that are not affected must also be true after

application of the operator. The post-conditions are
equivalent to the effects plus all predicates in the pre-
conditions that are unchanged.

Logically Equivalent Descriptions The major
problem in the implementation of the system is that
there is more than one possible logical description of
the world. For example, in the towers of Hanoi prob-
lem, the states (not ons Pegl)(not ons Peg2) and
(ons Peg3) are equivalent because there are only three
possible pegs and each disk must always be on a peg.
The macro-learner extracts macros that have the same

post-conditions but can be used to generate abstract
macros. This means that the algorithm must establish
the logical equivalence of world states. There are two
possible solutions to this problem.

The first method uses a resolution theorem prover to
prove the equivalence of post-conditions. This method
is the most general one. A set of axioms can be given
that can be used to prove facts about the domain.
Since the operator set describes all elementary actions
by which the world can be affected, it is also possible
to derive certain facts used in the proof. For example,

since the only operator that moves the small disk es-
tablishes the fact that the small disk is on some peg,
the system can derive the fact that the disk is always
on some peg.

The second method uses a unique description of the
world. Two states are identical if and only if they have
the same description. This can be achieved by chang-
ing the representation of operators or by designing a
set of domain dependent rewrite rules that change a de-
scription dynamically. For example, a rewrite rule can
be used to convert (not sag Pegl)(aot ons Peg2)
to (ou Peg3).

This projects focuses on the feasibility of learning
abstract operators rather than the design of a practi-
cal planning system. Therefore, the standard descrip-
tion language of operators was changed to generate a
unique description of all world states. For example,
the standard definition of the operator to move the big
disk in the towers of Hanoi problem is

novo-big(SX 8Z)
Pre: (onb 8][) (not sag 8X) (not ons 8Z)

(is-peg 81) (is-pog 8Z)
Post: (onb 8Z) (not onb 8X)

This definition was changed to allow unique descrip-
tions of post-conditions. Therefore, the nova-big op-
erator was defined as follows:

nove-btg(SX 8V 8Z)
Pro: (onb $g) (sag BY)

(is-peg 81) (is-peg BY) (is-png 8Z)
Post: (onb 8g) (not onb 8X)

This means that all operators must reference all
three pegs in their argument list, and that all facts
are represented directly instead of indirectly.

Example

This section shows an example of the macro-learner in
the towers of Hanoi domain with two disks. There are

three reasons for selecting this problem.

• It was easy to find a representation of operators that
resulted in a unique logical description of the world.

• The problem is well studied and comparison to other
planners can be made. Also, the optimal solution for
this problem is known.

• The structure of the problem is well suited to ab-
stract operators. In fact, abstract operators can re-
duce its time complexity to be linear in the length
of the solution.

In the initial state, both disks are on the first peg.
The goal is to move both disks on the third peg. The
standard operator set is changed to use a unique logical
description and is represented by:

Macro-Learner(Plan,Operator-Set)
Compute8.ll possible macrosin the plan.
For each macro in the plan and each operator do

macro-gen := EBG(macro0op)
eorld := post-conditioneCaacro-gen)
if gorld = poet-condi_ions(op) _hen

if proCnacro) and pre(op) differ in one predicate
ab := crea_e-abstract-opera_or(nacro,op)
link(ab,op)
link(ab,nacro)

opera$or-set := add-operator(ab, operator-set)
re,urn(operator-set)

Figure 2: Macro--Learner Algorithm

nove-s($X $¥ 8Z)

Pre: (ispeg 8l)(ispeg 8Y)(ispeg 8Z)
Cons $X)

Post: (not one 8X)(ons 8Z)

nove-bCSX 8Y *Z)

Pro: (ispog 8X)(ispeg 8Y)(ispsg 8Z)
Cons 8¥)
(onb 8X)

Post: (not onb 8X)(onb 8Z)

AbTweak is used to find a solution for this

problem which is the sequence novo-s(Pegl,Pog2),
nove-b(Pogl,Peg3), novo-s(Peg2,Peg3). From
this solution three macro sequences can be extracted.

seq-l: novo-s(Pogl.Pog2),nove-b(Pegl.Peg3)
soq-2: novo-b(Pogl,Peg3),novo-s(Peg2,Peg3)
8oq-3: novo-s(Pegl,Peg2),nove-b(Pogl,Peg3),

novo-s(Pog2,Peg3)

From the first sequence 8eq-1, the following macro
can be generated after using EBG to compute its pre-
conditions and effects. Operator macro I is not changed
when generalizing with the original operator nove-b
because neither restricts the variable instantiations.

nacrol(SVt 8V2 8V3)

Pre:(is-peg 8V1) (is-peg 8V2)
(is-peg 8V3)
(one 8Vl) (onb 8¥1)

Post:(ons 8V2) (onb 8V3)
(nee one 8V1) (noC onb 8V1)

The post-conditions of nacre1 and nove-b are iden-
tical (except renaming of variables) and are given by
the following set of facts:

(is-peg 8V1) (is-peg 8V2)(is-peg 8V3)
(one 8V2) (on= *V3)

The algorithm then compares the preconditions of
nacre1 and nove-b. The pre-conditious differ only in
the predicate one which is (one 8VI) for aacrol and
(ons 8V2) for novs-b. Therefore, the macro-learner

constructs an abstract operator in which the one pred-
icate i, deleted. Thk abstract operator k generalized,
and it contains two refinements: nove-b and nacre1.
However, in order to avoid unnecessary variable instan-
tiations, the linked macro is fully instantiated. In that
way, if the same problem has to be solved in the future,
the variables do not need to be re-instantiated. How-

ever, the abstract operator shows the generalization
that is po_ible. Figure 3 shows the resulting operator
hierarchy.

Since only nmcrol and move-b have identical pelt-
conditions, the abstract operator in figure 3 is the only
new operator that is added to the operator set.

Evaluation

With the implementation of the macro--learner, we
tried to establish the usefulness of our first heuristic (to
improve the operator set by generating new operators
with more general pre-conditions). It is interesting to
note that this heuristic leads to an abstraction hierar-

chy for the two-disk towers of Hanoi problem that is
identical to the one shown to be optimal by Knoblock
[Knoblock, 1991]. If the planner uses a control strategy

that supports abstractions, the time complexity grows
only linearly with the length of the solution [Knoblock,
1991].

Good performance of the planning system with the
new operator set was expected, because the optimal
set of abstractions was generated. This was verified in
a number of experiments where the solution time was
reduced from 40 to 24 seconds on a Sparc 2 station.
It took ten seconds to compute the abstract operators.
Similar results were obtained for the problem with the
initial state (one peg3) (onb peg1) and the goal state
(onb peg3)(ona peg3).

The macro-learner was also tested on the towers of

Hanoi puzzle with three disks. The results of these
experiments were similar to the ones for the previous
example. The macro learner created two abstract op-
erators:

• move the medium disk ignoring the small disk.

[Abstract-1 (SX $Y $Z)] <move-s($X SY SZ)>

{Move big disk, ignore small disk} (move smaJl disk}

-b(SX $Y $Z)>

move big disk, small is on peg $Y}

e-s(Pegl Peg3 Peg2)><move--b(Pegl Peg,?, Peg3)>
{move big disk, small is on peg1, big is on peg 1}

Figure 3: Learned Operator Hierarchy for the Towers of Hanoi 2

• move the large disk ignoring the medium disk.

These abstract operators are learned after only one
successful plan is generated. After solving the prob-
]era a second time, the abstract operator learned to
move the large disk regardless of where the medium
and small disks are. These two abstract operators to-
gether with the primitive operator to move the small
disk form the optimal operator set for the towers of
hanoi problem with three disks. The solution time de-
creased from 2658 seconds to 29 seconds. The compu-
tation time for learning the abstract operators was 81

seconds. This result suggests that the learning time
scales up much better than the planning time.

The most interesting result of the towers of Hanoi
problem with two and three disks was that the system
learned the optimal set of abstractions. This mesas
that it not only learned the correct number of abstrac-
tion levels, but also the correct number of abstract oi>-
erators for each level. Previous systems such as MPS,
MAC-LEARN, and PiL2 are unable to learn these ab.
stract operators.

Learning other Problem Solving

Knowledge

This section describes methods for learning other prob-
lem solving strategies that can be represented in our
common representation. One of the main advantages
of a common representation is that not all operators in
a refinement have the same level of abstraction. Tbere-

fore, other strategies such as reactive rules can be used.
These strategies can be learned by comparing all refine-
ments of a general operator.

After learning a new operator, the system uses addi-
tional heuristics to incorporate the new operator into
the existing operator set. All new macros are part
of the refinement of a more al_tract operator (or the
original initial state, goal state pair). The system com-
pares the new operator to all other refinements of its
abstract operator.

Raising Operators First the system tries to extract
operators that occur in all refinements. The common

operators are "raised" in the abstraction hierarchy, so
that the planning system can focus on those operators.
For example, given the abstract operator in figure 3,
the operator to move the big disk is common in both
refinements. In this case, the abstraction hierarchy is
changed to reflect the fact that the operator move-b is
an essential part of moving the big disk. The resulting
abstract operator is similar to the RWM type operator
subgoais [G_venir and Ernst, 1990]. If the common
operator occurs at the beginning of the sequence, a
reactive rule is formed.

Generatins AbstractionJ from Subsequences
The system alto extracts equivalent post-conditions
resulting from the execution of operators in all refine-
ments. If matching post-conditions are found, these
states are extracted as new abstract operators. For ex-
ample, assume that there are two operators to move the
big disk, hove-b1 and move-b2. Furthermore, in fig-
ure 3, the system treed move-bl in the first refinement
and move-b2 in the second refinement. In that case,
there are no common operators in all refinements. Nev-
erthelees, common to all refinements is a state where

the small disk is on peg IY. Therefore, the original
problem is broken up into two abstract operators. The
first one moves the small disk onto the medium peg,
the second abstract operator moves the medium disk.
The resulting operator hierarchy is identical to a sub-
goal sequence.

Failure When the system generates an unsuccessful
plan, some of its expectations are wrong. If the user
provides the system with additional information ex-

plaining why the plan failed (e.g. (problm_x)), the
system can generate an abstract operator that relates
the original problem to an elaboration of the prob-
lem, where the effects have additional conditions. (e.g.
(nee problm_z)). In the future, the planner is re-
minded of this problem and can avoid it.

8

Conclusions

The major contribution of this paper is the design of
a learning system for a planner that combines macros,
abstraction hierarchies, and case-based planning. The
advantage of this approach is that techniques from

both classical planning and case-based planning can
be combined in the problem solving process.

The paper describes an analytical dynamic filtering
scheme used to rule out inefficient operators. The dy-
namic filter is based on a formula relating the empirical
usefelness and the length and branching factor of the
operator. The common representation means that the
dynamic filter can be applied to abstract operators and
cases as well.

The paper also compares three previous approaches
to the selection of new macros: Korf's MPS, lba's
MAC-LEARN, and Yamada's PiL2 system. From this
comparison, guidelines are suggested for the selection
of new operators. The goal in creating a new operator
is trying to improve the current operator set. There
are two ways in which an operator can be improved:

• Create an operator with more general pre-
conditions. The effects of this operator can then
be achieved in more states. The removal of pred-
icates in preconditions leads to the generation of
abstraction hierarchiee.

• Create an operator with more specific effects. This
removes side-effects of existing operators.

A macro learner was implemented and tested on a
number of problems in the towers of Hanoi domain. As
important parts of the complete planning systems are
still missing, the implementation focused on comparing
the learned macros to the ones learned by other sys-
tems. The results of the towers of Hanoi domain are

promising.The system learned the optimal set of ab-
stract operators for the two and three disk problems.

The paper also describes methods to learn diverse
problem solving knowledge such as reactive rules, and
automatic subgoaling. The next step in our research
is the implementation of a complete planning system
that incorporates these methods.

The paper also compares three different approaches
to the selection of new macros. From this compari-
son guidelines are suggested for the selection of new
operators. The main motivation for these heuristics is
to find widely applicable operators with very specific
effects.

References

Jacky Baltes. A symmetric version space algorithm
fax _eexning disjunctive string concepts. In Prec.
Fonrth UNB Artificial Intelligence Symposium, pages
55-65, Fredericton, New Brunswick, September 20-1
1991.

H. Altay G/ivenir and George W. Ernst. Learn-
ing problem solving strategies using refinement and

macro generation. Artificial Intelligence, 44(3):209-
243, 1990.

Kristian J. Hammond. Case Based Planning. Aca-
demic Prem Inc., 1989.

G. A. Iba. A heuristic approach to the discovery of
macro-operators. Machine Learning, 3(4):285-318,
1989.

Craig A. Knoblock. Automatically Generating Ab-
stractions for Problem Solving. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1991.
Tech. Report CMU-CS-91-120.

R. E. Korf. Macro-operators: A weak method for

learning. Arti)_ciai Intelligence, 26(1):35-77, 1985.

R. E. Korf. Planning as search: A quantitative ap-
proach. Artificial Intelhgence, 33(1):65-88, 1987.

S. Minton. Selectively generalizing plans for prob-
lem solving.In Proceedingsofthe Ninth International

Conference om Artificial Intelligence,pages 595-599,
1985.

P. Shell and J. Carbonnei. Towards a general frame-
work for composing disjunctive and interative macro-
operators. In N. S. Sridharan, editor, IJCAI-89 Pro-
ceedings of the Eleventh International Joint Confer-
ence on Artici]ical Intelligence, volume 1, pages 596-
602, 1989.

S. Yamada and S. Tsuji. Selective learning of macro-
operators with perfect causality. In N. S. Sridharan,
editor, IJCAI-89 Proceedings of the Eleventh Inter-
nationalJoint Conference on ArticificalIntelligence,

volume 1, pages 603-608, 1989.

Qiang Yang and Josh D. Tenenherg. ABTWEAK:
Abstracting a nonlinear, least commitment planner.
Technical report, University of Waterloo, 1990.

